A Co-funded by
HILCIITyYy DO the European Union

Alpine Space

SmartCommuUnity

DELIVERABLE 3.5.1 | Component
for Data Reporting

w
o
~_

. w
-

— . w =3 RREG Alpine Space SmartCommUnity project|

: ,m] : October 2025

m University of Ljubljana (Lead partner)
L —

- S ottedra=resedrch and consultancy centre of Milan’s Polytechnic University on environmental

ANCI Liguria
Verband Region Sudlicher Oberrhein

————)
- -~

Regionalverband Siidlicher Oberrheini
ITC - Innovation Technology Cluster Murska Sobota Association for t etworked development of territories and services

Autonomous Region of Valle d’Aosta

- e
- -

The Project is co-funded by the European Union through the Interreg Alpine Space programme

Co-funded by
HILSITCY the European Union

Alpine Space
List of content
LISt Of CONTENT....eieeieieeeece ettt e ta e et e e be e e b e e s baesbe e baessbe e saeensaessaeessaesssesnsaenseens 1
LISt OF FIGUIES .ottt sttt sttt e st e s bt et e s st e sbaeste s st esseessasseanseensesssensenn 2
Y o 1] 1 = Yt RSP RRR 3
[aT (e Yo [Vt d o) o VRSOOSR PPRN 3
Overview of Features and WOTrKIIOW.......c..eioviiiiiiiceeee ettt areeeans 4
TeChNICAl AFCHITECIUIE ...ttt te e et e e e ta e e s ta e e s ba e e e baeessbaeesasaeennaeas 5
Code Walkthrough (Modules and FUNCLIONS).......coiivierieneeiienienieeieseeseesee e steeaesee e saesaeseeesseenes 7
DAta FEECRING .ottt ettt st b e st st e bt et e st esbe e b e saeesne s 8
BULK SCIapiNGg ceeuveeeiiieeieeiiieeteet ettt ettt sttt ettt e e s b et s st e s st et e e besasesseesbesntessaensesasansens 9
ParSING METIICS .nveeeiteieeieeete ettt ettt sttt e et e st e s b e e s st e s b e e st e e st e saeesaseesnbesaseesseesaseenneans 10
Communicating With Chatbasecouoiiiiioi e 11
P oo U | Al @ g = | 1 o - 1< RRRRRRRURRURRRRRRRNt 13
SErEAMIIT APP SEIUCTUIE .ttt ettt e e e te e s e e s te e s st e ssbeessaeesbeesssessseenssessseenseenn 13
Deploying the CDR on the Streamlit Community Cloud.........cooevviiniiieniiinennienieneeeseeneeeenes 18
Deployment on Other PlatfOrms ...ttt e ve e e sbeesaae s 19
Usage TUtOrial (FOr ENA USEIS) ..uivueruerueriirieeieieieieniesiesieete ettt s e s e s sttt esaesbessessessesnnensenes 20
Conclusion and Further CoNSIAErationscccceeeieecieenieeiiecieeseeeie et e ereeseesreesreessbeessaesseesaeens 23
REFEIENCES ...uveeteecteecie ettt et e e et e e e e e ebe e e e e e ebeestaeebaeesaaeabe e sseesbeessseesseeesaeessaesseensseseesssaenssennses 25

Co-funded by
HILSITCY the European Union

Alpine Space
List of figures
Figure 1. Location of the homepage to access the CDR.........ccevevierenininerieieieresese e 3
Figure 2. View of the GitHub repository for the CDR.........cccvirieiiniineiiectecceeeee e 8
Figure 3. General View Of the CDR.....cc.coiiiiiiieieeseeeetetet ettt sttt ettt sbe s b e ssaenaes 20
Figure 4. General overview of one report generated usSing our toOlccceeevevieerenienencnenieenaene 22
Figure 5. General view of the Recommendations for Improvement and Conclusions 23

Interreg [l soe® en
Alpine Space

SmartCommunity

Abstract

This Deliverable 3.5.1 reports the development of a component that automates the process of
gathering and reporting on the user activity within the SmartCommUnity platform. It retrieves
text from key website sections, identifies metrics such as active users and post counts, then
forwards this material to an Al agent through the Chatbase API. A Streamlit! interface lets users
enter a custom prompt, initiate the workflow with a button, view the generated report, and

download it. Deployment options include local execution and hosting on the Streamlit Cloud.

Introduction

The Component for Data Reporting (CDR) is a Streamlit-based web application designed to
generate a status report of the SmartCommuUnity platform activity. It automatically collects data
from the online community platform and uses an Al engine to produce an insightful report. This
document serves as a technical document, explaining how the program works under the hood

and how to deploy and use it. Figure 1 shows the location to get access to the component.

Smaffalps Home News Smart Tools v Alpine Community v Testareas v About v
Alpioe Smar Vi lages

Interactive Guide

Gamification Approach

Good Practices Catalogue

Smartness Assesment

Test Area Analyzer

Data Reporting

Component

Smart Villages Cocreative
Toolbox

S ok

Figure 1. Location of the homepage to access the CDR

! https://streamlit.io/

https://streamlit.io/

Co-funded by
HILSIrey the European Union

Alpine Space

What does the component do? In simple terms, the component scrapes key sections of the Smart
Alps community site (such as homepage, insights, forums, and blog), extracts important statistics
(like number of users, threads, posts, etc.), and then feeds this information to an Al chatbot (via
Chatbase API) to generate a Community Status Report. The output is a text-based report

summarizing user activity and other insights across the platform.

Who is it for? The tool is useful for community managers, project stakeholders, or data analysts
who want to quickly understand the health and engagement of the Smart Alps community
without manually gathering data. Non-technical users can simply click a button to get a report,
while technical users can extend or customize the component as needed. This fits well with the

current trends on engagement platforms [1, 2].
Overview of Features and Workflow

To understand how the program operates, let us outline its main components and workflow:

e Web Scraping of Community Data: The app automatically fetches text content from
multiple sections of the Smart Alps website that has been developed in Wordpress [3, 4].
It uses Python’s requests library to retrieve page HTML and to parse and extract textual

information.

« Data Extraction and Metrics: After obtaining raw text from the site, the component scans
the text for key numeric indicators (using regular expressions). It looks for patterns like "X
active users","Y threads", "Z posts", etc., converting these figures into structured metrics.

This gives concrete numbers for community activity.

e Al-Powered Analysis (Chatbase API): The collected textual content and metrics are then
sent to an Al service to analyze and summarize. The component uses Chatbase (an Al
chatbot platform) viaits APl to generate the report. Chatbase allows integration of custom
Al agents through API calls, enabling the app to send the website data and receive a
conversational summary back. The app asks an Al (configured as a "senior data analyst")

to provide insights into the community’s status using the scraped data as context.

Co-funded by
HILSIrey the European Union

Alpine Space

e Streamlit User Interface: The entire tool runs as a Streamlit web app. Streamlit is an
open-source Python framework that lets developers create interactive data apps with just
a few lines of code. In this component, Streamlit provides the front-end: a simple Ul with
a title, an input text area for a custom prompt, and a button to generate the report. It
displays the resulting report nicely formatted and even offers a download button for

convenience.

e Customization and Automation: Users can customize the focus of the report by providing
a prompt (for example, "focus on the last month’s new threads and active users"). The
component then includes thatin the Al prompt to tailor the analysis. Everything from data
collection to report generation happens automatically when the user clicks "Generate

Report", making it easy to use.

In summary, the program flows through data scraping > data parsing - Al analysis > report
display. The following sections dive deeper into the technical implementation of each part, and

a later section will explain how to deploy and use the component.
Technical Architecture

This section provides a technical breakdown of the application’s structure. The code is organized
into several functions, each responsible for a specific task, and a main section that ties everything

together in the Streamlit app interface. Below is a high-level architecture outline:

e Language & Framework: Python is the programming language used, using the Streamlit
framework for the Ul and interactivity. Streamlit enables the component to run in a web

browser and provides widgets like text input and buttons.
o External Libraries: Key libraries include:

o requestsfor HTTP requests to fetch web pages (simplifies making GET calls to URLs

and handling responses).

Co-funded by
HILSITCY the European Union

Alpine Space

o bs4 (BeautifulSoup) for parsing HTML content and extracting text from <p> tags
(paragraphs).

o re (Python's regex library) for pattern matching to find statistical figures in text.
o PIL (Pillow) forimage handling, used here to load and display a GIF logo if available.

o streamlit for building the interactive Ul elements (text areas, buttons, display

functions).

e Chatbase API: Instead of directly using an OpenAl API, the component uses Chatbase,
which hosts an Al agent (powered by GPT). The Chatbase APl endpoint

(https://www.chatbase.co/api/vl/chat) is called with an authorization token and a

specific chatbot ID (set in the app’s configuration). The payload includes a sequence of
messages (with roles like "system" and "user") to simulate a conversation for the Al.

Chatbase returns the Al-generated response text, which the app then displays.

o State and Secrets Management: Sensitive information such as the Chatbase API key
(AUTH) and the Chatbase chatbot ID (ID) are not hard-coded; they are retrieved from
st.secrets. In Streamlit, st .secrets is a secure way to store credentials or config
variables. This means the actual API key and chatbot ID are kept outside the code (for

security) and injected via a secrets file or environment variables at runtime.
The text below illustrates the flow when a user runs the app:

1. User Input: User accesses the Streamlit app Ul. They see a prompt text box and a
"Generate Report" button. They may optionally type a focus prompt (or use the default

one).

2. Data Scraping: Upon clicking the button, the app invokes scrape sections () which
calls fetch text () for each predefined URL (Homepage, Insights, Forums, Blog on

smart-alps.eu). The app shows a spinner indicating progress.

https://www.chatbase.co/api/v1/chat
https://smart-alps.eu/

Co-funded by
HILSIrey the European Union

Alpine Space

3. Content Compilation: The text from each section is concatenated into one large context

string. Section titles separate the content for clarity.

4. Metrics Extraction: The combined text is scanned by extract stats () to find key
numbers (active users, threads, posts, discussions). If found, these stats are appended as

a "Key Metrics" summary to the context.

5. Al Query Formation: The context (scrapped text + metrics) and the user’s prompt are
packaged into a payload and sent to the Chatbase APl via send to chatbase (). This
includes a system role message to set the Al persona (a senior data analyst) and two user

messages: one containing the context data, and one containing the user’s request prompt.

6. Al Response: Chatbase processes this and returns a generated report text. The spinner

stops.

7. Output Display: The Streamlit app then displays the result under "Community Status

Report" and provides a download button for the user to save the report as a text file.

Throughout this flow, errors (like a failed web request) are caught and reported in the text (e.g., if
a section fails to load, the context will contain an [Error fetching ...] note for that

section, so the Al is aware something was missing).

The next section will explain each part of the code in detail, explaining the logic and purpose of

each function and component.
Code Walkthrough (Modules and Functions)

Let us go step-by-step through the code, breaking down what each function does and how they
work together. This will be useful for developers or just users who want to understand or modify

the app’sinternals.

First, it is necessary to mention that the code is available to the public in the form of Open Source,

so they can download, inspect, and execute the code. Figure 2 shows the GitHub repository where

Co-funded by
HILSITCY the European Union

Alpine Space

SmartCommunity

it is located: https://github.com/jorge-martinez-gil/data-reporting-component. After that, let us

analyze the component in more detail.

§ data-reporting-component Puic

¥ main ~ ¥ 1Branch 0Tags

i jorge-martinez-gil Update README.md
[LIcENSE

[README.md

O apppy

B logo.gif

D requirements.txt

1] README Z[3 MIT license

Q, Gotofile

nitial commit
Update README.md
Update app.py

Files added

Create requirements.txt

t

< Pin

Add file ~ <> Code ~

780a3b4 - last month

@ Watch 0 ~

¥9) 8 Commits

4 months ago

last month

4 months ago
4 months ago

4 months ago

P4

SmartCommUnity - Data Reporting Component & [l

Generate clear, data-rich status reports for the SmartCommUnity / Smart-Alps ecosystem. The app scrapes public

pages, extracts basic activity stats, and asks Chatbase to produce an analyst-style write-up you can read online or

download.

Features

Export: download the repertasa .t .

Data Fetching

One-click report: scrape + analyze + render in a single action.

Multi-section input: Homepage, Insights, Forums, Blog.

Analyst voice: Chatbase prompt tuned for crisp, actionable output.

Heuristic stats: pulls numbers like active users, threads, posts, discussions from page text.

Figure 2. View of the GitHub repository for the CDR

% Fork 0 - ¥ Star 0 -

About el

SmartCommUnity - Data Reporting
Component (DRC)

¢ data-reporting-component.streamlit.app/

Readme
MIT license
Activity

0 stars

0 watching

< O % ¢ o B

0 forks

Releases

No releases published
Create a new release

Packages
No packages published

Publish your first package

Languages

® Python 100.0%

Suggested workflows
Based on your tech stack

@ Pylint Configure

Lint a Python application with pylint.

Purpose: Retrieve the textual content from a given webpage URL. This function uses the requests

library to perform an HTTP GET request and then parses the HTML to extract readable text.

e The function accepts an url string and attempts to fetch it with requests.get. A

timeout of 15 seconds is set to avoid hanging if the site is slow or unresponsive.

e Ifthe HTTP request fails (due to a network error or a non-200 status code), the exception

iscaught and amessage like "[Error fetching <url>: <error>]"isreturned. This

ensures the calling code knows that section cannot be retrieved.

https://github.com/jorge-martinez-gil/data-reporting-component

Co-funded by
HILSITCY the European Union

Alpine Space

e Onsuccess, it uses BeautifulSoup to parse the HTML (BeautifulSoup (resp.text,
'html.parser')). BeautifulSoup then finds all <p> tags on the page

(soup.find all('p')).

o lItiterates through each paragraph tag and uses get text (strip=True) to extract

clean text. All paragraph texts are collected into a list.

e The list of paragraph texts is then joined with two newlines ("\n\n") between each, to
form a continuous block of text. This newline separation helps preserve some separation

between paragraphs when the Al analyzes the context.

e The resulting text string is returned. If no <p> tags are found or all are empty, this might

return an empty string (though in practice the sections we target have text content).

Why this approach? Web pages often contain menus, scripts, and other non-content elements.
The rationale behind focusing only on <p> tags is to extract the meaningful textual content (like
article text, descriptions, forum posts, etc.) and ignore navigation menus or other irrelevant text.

This keeps the context focused and relevant for the Al analysis.
Bulk Scraping

Purpose: Gather text from multiple predefined sections of the Smart Alps site in one go. The
function defines a dictionary of section names and their URLs, then uses fetch text to get

content for each.

e The sections targeted (as seen in the code) are:

o 'Homepage' - the main landing page (https://smart-alps.eu/)

o 'Insights' - a section for insights or news (https://smart-alps.eu/insights/)

o 'Forums' - the community forums page (https://smart-alps.eu/forums/)

o 'Blog'-the blog page (https://smart-alps.eu/blog/)

https://smart-alps.eu/
https://smart-alps.eu/insights/
https://smart-alps.eu/forums/
https://smart-alps.eu/blog/

Co-funded by
HILSIrey the European Union

Alpine Space

e It returns a dictionary where the keys are section names and values are the text content

fetched from those URLs.

e Internally, it uses a dictionary comprehension to loop over the sections: name:
fetch text (url) for name, url in sections.items (). This means it calls

fetch text oneach URL and collects the results.

e Thecodeinmain () canscrape all needed data with a single call, while showing a loading

spinner to the user.

This design makes it easy to add or remove sections in the future by just editing the sections
dictionary. Each section’s content is kept separate initially (in the dictionary) for clarity or

potential separate use, but as we will see next, they get combined for the Al processing.
Parsing Metrics

Purpose: Search the aggregated text for specific statistical metrics (active users, threads, posts,

discussions) and extract their numeric values. The function returns a dictionary of any stats found.
e Thefunction is given one big text string (which could be the concatenation of all sections).
o Itdefines a set of regex patterns to look for certain phrases followed by numbers:

o 'Active Users": r'([\d,]+)\s+active users' - This regex looks for one or more digits
(with optional commas) followed by "active users". For example, it would catch

"5,000 active users" or "500 active users".
o 'Threads'": r'([\d,]+)\s+threads'
o 'Posts':r'([\d,]+)\st+posts'
o 'Discussions': r'([\d,]+)\s+discussions'

e The patterns are case-insensitive (re . IGNORECASE), so "Threads" or "threads" will both

match.

10

Co-funded by
HILSIrey the European Union

Alpine Space

e Foreachpattern, re.searchisusedinthetext.|famatchisfound,match.group (1)

captures the numeric part.

e The captured number string may include commas (e.g., "3, 897"), so it removes commas

and converts the string to an integer.

e Each metric found is stored in a stats dictionary with the key (e.g.,"Active Users")and

the integer value.
e Ifaparticular metricis not found, it just will not appear in the dictionary.

e Finally, the dictionary is returned. For example, it might return {'Active Users':
3897, 'Threads': 50, 'Posts': 200, 'Discussions': 45} depending

on the content found.

This step is important because it pulls out hard numbers that can be highlighted in the report.
These figures can show growth or scale (e.g., how many users or contributions exist), which are
points of interest in a status report. The idea of extracting them beforehand is to facilitate that we

can directly present them and ensure the Al has them clearly listed in the context.
Communicating with Chatbase

Purpose: Send the compiled context and the user’s prompt to the Chatbase API to get an Al-
generated report. This function handles preparing the API request and returning the response

text.

e It constructs a payload dictionary for the POST request. This payload follows Chatbase’s

API format for sending a chat conversation. Specifically, the payload has:
o messages: a list of message objects, each with a role and content.

= Thefirst messageis { 'role': 'system', 'content': 'You are
a senior data analyst providing clear and actionable

community insights.'}. This acts as a system instruction that sets

11

Co-funded by
HILSIrey the European Union

Alpine Space

the behavior of the Al. It tells the Al to act like an expert analyst who will

produce insightful and actionable commentary on community data.

= Thesecond messageis { 'role': 'user', 'content': context}.
Here, the entire scraped context (all sections’ text and the metrics
summary) is given as if the user provided this information. This is a way to

feed knowledge into the chatbot for this conversation turn.

= The third messageis { 'role': ‘'user', 'content': prompt}.
This is the actual question or prompt we want the Al to answer. In our app,
this prompt is either the default instruction (e.g., "Please produce a detailed
analytical report on all user activity...") or a custom prompt entered by the

user in the text area.

o chatbotld: the ID of the specific chatbot configured on Chatbase (this is fetched

from secrets configuration).

o stream: set to False, meaning we want the full reply in one go (not a streaming

response).

e Itthen performs requests.post to the Chatbase APl URL with this JSON payload and
the required headers (including the Authorization token from st.secrets ["AUTH"]
and content type). A timeout of 30 seconds is set for this request to avoid hanging too long

if the Al takes time.

o If the HTTP request returns an error (non-2xx status), raise for status () will
trigger an exception. In this app, such exceptions are not explicitly caught in this function,
meaning an error here would propagate up (in Streamlit, that would show an error
message on the app). However, if everything is configured correctly (valid API key, chatbot

ID, etc.), the response should be 200 OK.

e The function then parses the JSON response with resp. json (). According to Chatbase

API, the response JSON contains a field 'text' which holds the chatbot’s answer. It does

12

Co-funded by
HILSIrey the European Union

Alpine Space

resp.json () .get ('text', '') toretrieve the textorreturn an empty string if not

found.

e That text (the Al-generated report) is returned to the caller.
About Chatbase

Chatbase is a platform to create and interact with custom chatbots. In our case, the chatbot has
been set up with knowledge or style relevant to the Smart Alps community. The API call we use is
sending a conversation to the bot and getting the next message. This method of integration allows
us to use Al in a custom interface. The advantage is we can supply our own context dynamically

(the latest scraped data) rather than relying on a pre-defined knowledge base only.

One detail: we supply the context as a user message. This is a common trick to feed background
information into a chat-based Al that might not have a separate memory or knowledge base
loaded. The system prompt sets the tone, the context user message gives facts, and the final user
message asks for the analysis. The Al sees all these messages in sequence and then produces a

response taking them into account.
Streamlit App Structure

Purpose: This is the entry point of the application when running. It sets up the Streamlit interface
and orchestrates the calls to all the functions above when the user interacts with the app so it can

have access to the functionality.
The key parts of main () include:

o Page Configuration: st.set page config(page title="Smart Alps
Community Status", layout="wide").Thissetsthe title of the page (seen on the
browser tab) and uses a wide layout for the app (more horizontal space, which is useful for

wide text like a report).

13

Co-funded by
HILSIrey the European Union

Alpine Space

Logo Display (Optional): The code attempts to open an image file 'logo.gif' and display it
using st .image (logo, width=200). Ifthisfile is not present or fails to open, it just
skips (due to the try/except). This is intended to show a logo for branding. In a deployment

scenario, adding a logo.gif to the app directory would make this work.

Title and Description: st .title ("Smart Alps Community Status Report")
creates a large header on the page. Then st.write (...) is used to put a descriptive
text below it. The description explains that the tool generates reports about the

SmartCommuUnity ecosystem (the main platform and satellite tools).

Prompt Input: st.text area("Customize report focus:", value=(
"..."), height=120) providesamulti-line text area pre-filled with a default prompt.
The default prompt is a polite request for a detailed analytical report with actual numbers
and insights. The user can edit this prompt to focus the report on specific aspects if they
want. The height=120 makes it a bit taller for comfort. This text area’s content is stored

in the variable prompt.

Generate Button: if st .button ("Generate Report"):defines a button that says,
"Generate Report". The code inside this if block only runs when the button is clicked. This

is the main trigger for the process. When clicked, two major phases happen:

1. Scraping Phase: It enters a with st.spinner ("Scraping site
content...") : context. Streamlit’s spinner will show the message "Scraping
site content..." to indicate work in progress. Inside this, it calls sections =
scrape_sections (). This will fetch all the section texts as described earlier.
Next, it combines them into one big string combined text. This combinationis
done by joining each section’s content preceded by a markdown header line (###

SectionName) for readability. Essentially:

2. Al Generation Phase: Next, it enters another spinner: with
st.spinner ("Generating report via Chatbase..."):Inside this, it

callsreport = send to chatbase (combined text, prompt). Thissends

14

Co-funded by
HILSIrey the European Union

Alpine Space

the accumulated context and the user’s prompt to the Chatbase APl and waits for
the result. The spinner message "Generating report..." is shown during this time,

which might take a few seconds depending on the Al and network latency.

= When send to chatbase returns, the variable report holds the Al-

generated report text.

o Displaying Results: After the spinners, the code proceeds to show the output. It does
st.subheader ("Community Status Report") which puts a nice subheader

above the report, indicating what the text below is.

o Then st.markdown (report) is used to render the report text. The report
contains multiple paragraphs, bullet points, etc., as generated by the Al. Using
markdown ensures that any Markdown formatting in the Al’s response is rendered
(for example, if the Al output includes lists or headings, they will appear formatted

correctly).

o Finally, st.download button(...) is created to allow downloading the
report. This button is labeled "Download Report as TXT". It uses the report string
as data, sets a filename "community_status_report.txt", and specifies
mime="text/plain". This means when clicked, the browser will download a
text file with the content of the report, which is useful for saving or sharing the

analysis.

e Running the App: Thelastpart if @ name == " main ": main() ensures
that when this script is executed, it calls the main () function to start the Streamlit app.
In Streamlit, this structure also means the app interface is defined by what happens in

main ().

A few UI/UX details to note:

15

Co-funded by
HILSIrey the European Union

Alpine Space

e The use of st.spinner provides feedback to the user that something is happening
during the potentially slow operations (scraping and Al processing). Without it, the user

might think the app froze.

e The separation of scraping and Al generation spinners is good for clarity, if scraping takes

longer due to multiple pages, the user sees that step, and then the Al step.

e Usingasub header for the report and markdown for content makes the output look clean.
Also, by providing a download option, the user can retain the report, which might be

needed for reporting to others or record-keeping.

The main () function ties everything together: it gets input, triggers processing, and outputs
results, all within the reactive framework of Streamlit (which reruns the script from the top on

each interaction, maintaining widget state seamlessly).
Deployment Guide

One of the requirements was how to deploy this application. Deployment can be done on various
platforms, but here we will consider a couple of common scenarios: running locally or deploying
to Streamlit Cloud (Community Cloud) for public access. We will also cover the necessary

configuration for the Chatbase integration.
Prerequisites

e Python Environment: Ensure to have Python 3.8+ (Streamlit typically supports Python

3.7 and above, but using a recent version is recommended).

e Required Libraries: The code uses several libraries. These should be installed via pip. It
might be necessary to create a requirements.txt with the following (if not already

provided):

Installing these (pip install streamlit requests beautifulsoup4 Pillow) will cover our dependencies

(note: PIL is installed via the Pillow package).

16

Co-funded by
HILSIrey the European Union

Alpine Space

o Chatbase Account: It is necessary to have a Chatbase APl key and a Chatbot ID:

o Sign up or log in to Chatbase and create an Al chatbot (Al agent). This typically
involves uploading data or giving it instructions. In our case, we might set it up with

some base knowledge or just rely on our context.

o Retrieve the API key (Authorization) and the Chatbot ID from the Chatbase

dashboard. These will be used to authorize our API calls.

e Smart Alps Website Access: The target site smart-alps.eu must be accessible from the
machine or environment where the app runs (it is a public site, so this is usually fine). If

running behind a firewall, ensure outbound HTTPS to that domain is allowed.
Configuring Secrets

The code expects st .secrets["AUTH"] and st.secrets["ID"] to be defined. There are

two main ways to supply these:

e Streamlit Community Cloud: If deployed on Streamlit’s cloud platform, it is possible to
add secrets via the app’s settings on the web. In the Secrets section of the app, set AUTH

to the Chatbase APl key and ID to the Chatbot ID.

e Local Deployment (using .streamlit/secrets.toml or environment): If running locally or
on an own server, it is possible to create a file .streamlit/secrets.toml in the application

directory:

Streamlit will read this file and populate st . secrets accordingly. Alternatively, it is possible to
set environment variables and access them via os . environ, or modify the code to directly use

env variables if preferred.
Make sure to keep these secrets secure and never commit them to a public repository.
Running Locally

To run the app on a local machine:

17

Interreg [l Soines™ e
Alpine Space

1. Install the prerequisites as mentioned (Python, pip packages).

2. Setup the secrets.toml with the Chatbase credentials.

3. Save the provided code into afile, say app.py.

4. Place anyimage as logo.gif in the same directory (optional).

5. Openaterminalin that directory and execute streamlit run app.py.

6. Streamlit will start a local web server and output a network URL (by default it is often

http://localhost:8501). Open this URL in the web browser to view the app.

7. See the title "Smart Alps Community Status Report", the prompt text area, etc. Click
"Generate Report" to assess it. The first run might take a bit of time (especially if the site

orAlis slow.

Streamlit automatically reloads the app when editing the code and saving, which is convenient

for iterative development or tweaking.
Deploying the CDR on the Streamlit Community Cloud

Streamlit offers a free hosting service for public apps. To deploy there:
1. PushthecodetoaGitHub repository (make sure nottoinclude secretsinthe code orrepo).

2. On the Streamlit Cloud platform, set up a new app by connecting to the GitHub repo and
selecting the app.py file.

3. Intheapp’ssettings on Streamlit Cloud, go to Secrets and add the AUTH and ID secrets as

mentioned earlier.

4. Deploy the app. Streamlit Cloud will install the requirements and run the app. After a short
build, it will provide a URL where the app is live.

18

http://localhost:8501/

Co-funded by
HILSIrey the European Union

Alpine Space

5. Visit the URL and use the app from anywhere. It is possible to share this URL with others

who might want to generate the report.

One consideration: The Chatbase APl usage might have cost or rate limits depending on the plan.
Make sure to monitor usage, especially if the app is public, because each report generation

triggers an Al API call.
Deployment on Other Platforms

If there is need to deploy on a different platform (like Heroku, AWS, or a self-hosted server), the

process will be similar:

Ensure the environment has the necessary packages.

e Provide environment variables or a secrets file for the credentials in order that the

confidential data cannot be publicly seen.

e Run streamlit run app.py in a stable way (for example, using a process manager or
container). Keep in mind Streamlit by default opens the app on a port; on a cloud VM to

listen on all interfaces (streamlit run app.py --server.address=0.0.0.0).

Make sure the port is exposed if using a cloud service.

Note on scalability: This app is lightweight, the main delays are waiting on external HTTP calls
(scraping the site, calling the Chatbase API). Streamlit can manage multiple users, but if many
users trigger it simultaneously, the bottlenecks would be the external services (website and
Chatbase API). For internal or moderate use, this should be fine. If deploying for heavy use,
consider adding caching for the scraping and ensure the Chatbase plan can manage concurrent

requests at the same time.

19

Co-funded by
HILSITCY the European Union

Alpine Space

Usage Tutorial (For End Users)

This section is a non-technical guide for someone who just wants to use the app to get reports,

included to make the document self-contained for all audiences.

Figure 3 shows us the general view of the DRC, particularly the view of the landing page. The
interface provides quick access to key actions through clearly labeled buttons and panels. No

technical knowledge is required to make use of this component.

..
- o
oo e,
L .‘v .: \“
..‘.‘ ;i

smartalps

Alpine Smart Villages

Smart Alps Community Status Report

This tool helps to generate reports to know the current state of the SmartCommUnity ecosystem, including the main platform as well as the satellite tools.

Customize report focus:

Please produce a detailed, text-based analytical report on all the user activity presenting actual numbers and insights. Please be as much complete as possible.

Generate Report

Figure 3. General view of the CDR

Accessing the App: Once the app is deployed (either locally or on a cloud), the user just needs a

web browser. Navigate to the app URL. They will see the interface with the title and a description

of the tool.
Generating a Report:

1. (Optional) Adjust the focus: There is a text box labeled "Customize report focus". By
default, it has a general prompt request for a detailed report on all user activity. The user

can modify this prompt. For example, one could write "Focus on new forum threads creatéd

20

Co-funded by
HILSIrey the European Union

Alpine Space

this week and user engagement metrics." This will instruct the Al to tailor the report. If

unsure, the user can leave the default text which yields a broad overview.

2. Click Generate: Press the "Generate Report" button. At this point, the user will see a

spinner and status messages:

o "Scraping site content...", the app is going to proceed by collecting the latest
data. This typically takes a few seconds. If it is the first run in a while, it might be a

bit longer.

o "Generating report via Chatbase...", the app is now analyzing the data with Al.

This is when the Al formulates the report. It may take a few more seconds.

3. View the Report: Once done, a section titled "Community Status Report" appears below

the button. The report itself is in a formatted text. It might contain:
o Anoverview paragraph summarizing the community activity.
o Key statistics like number of active users, posts, etc., highlighted or enumerated.

o Insights or trends identified by the Al, such as growth in user count, popular
discussion topics, comparison with previous periods if such info is in the context,

etc.

o Sections focusing on different areas (the Al might organize the report by the
sections it was given - e.g., insights about sections from the platform such as the
Forums, Blog updates, etc., depending on how the prompt and context were

interpreted).

Figure 4 shows us an example of a report generated using our CDR, illustrating how results are

automatically formatted for readability and consistency.

21

Co-funded by
HILSITCY the European Union

Alpine Space

SmartCommunity
Generate Report

Community Status Report

Based on the information provided, here is a detailed analytical report on user activity within the SmartCommUnity platform:

User Activity Report

Overview

The SmartCommUnity platform aims to connect alpine communities and facilitate the implementation of smart actions across six dimensions of
smartness: Smart Living, Smart Governance, Smart Mobility, Smart Economy, Smart Environment, and Smart People. The platform encourages

collaboration, knowledge sharing, and the exchange of best practices ameng communities.

User Engagement Metrics

= Active Users: There have been no active users recorded in the last 30 days. This indicates a potential issue with user engagement or awareness of the
platform's offerings.
« User Visits: The platform has recorded a total of 4,206 unique visits, averaging 262 visits per day. This suggests a consistent interest in the platform,

although the lack of active users indicates that visitors may not be engaging deeply with the content or features available.

Bounce Rate and Session Insights

* Bounce Rate: The bounce rate stands at 43.25%. This metric indicates that a significant portion of users are leaving the site after viewing only one
page. A lower bounce rate is generally desirable, as it suggests that users are finding the content engaging enough to explore further.

= Pages per Session: Users are viewing an average of 6.14 pages per session. This suggests that while users may be initially disengaged (as indicated by
the bounce rate), those who do stay are exploring multiple areas of the platform.

« Average Time on Page: The average time spent on a page is 35 seconds. This relatively short duration may indicate that users are not finding the

information they seek or that the content is not engaging enough to hold their attention. _
i i < Manageapp

Figure 4. General overview of one report generated using our tool

4. Download (optional): If the user wants to save this report, they can click the "Download
Report as TXT" button. This will download a plain text file. They can open it in any text
editor or word processor. This is useful for record-keeping, sharing via email, or further

editing.

Finally, Figure 5 shows us the general view of the Recommendations for Improvement and
Conclusions section, where the system summarizes detected issues and suggests corrective
actions. This view helps users quickly understand which factors most affect the results and

provides clear, actionable guidance for future improvements.

Co-funded by
HILSITCY the European Union

Alpine Space

Recommendations for Improvement

1. Enhance User Engagement: To address the lack of active users, consider implementing targeted outreach campaigns to raise awareness of the

platform's features and benefits. This could include newsletters, social media promotions, or webinars.

2. Content Optimization: Review the content available on the platform to ensure it is engaging and relevant to users. Consider incorporating multimedia

elements, such as videos or interactive content, to enhance user experience.

3. Gamification Strategies: Since the platform is designed to engage users through gamification, further development of this feature could encourage
more active participation. Consider introducing rewards or recognition for users who contribute to discussions or share best practices.

4. Monitor User Feedback: Implement a feedback mechanism to gather insights from users about their experiences on the platform. This could help

identify specific areas for improvement and enhance overall user satisfaction.

Conclusion

While the SmartCommUnity platform has attracted a notable number of unique visits, the lack of active users and engagement metrics suggests that
there is room for improvement. By focusing on enhancing user engagement, optimizing content, and leveraging gamification strategies, the platform can

better serve the needs of alpine communities and foster a more vibrant and interactive online community.

If you have any further questions or need additional insights, feel free to ask!

Download Report as TXT

Figure 5. General view of the Recommendations for Improvement and Conclusions

The user does not need to log in or provide any credentials to use the app. The server manages all
the heavy lifting (scraping and Al calls) where the app is running. From the user’s perspective, it is

one clicks to get the analysis.

Example Scenario: Suppose today a community manager runs the report. The output might say:
"As of today, the Smart Alps platform has 3,897 active users and a total of 50 threads with 200
posts across the forums. In the past month, user activity grew by 5%. Most discussions are happening
in the Smart Governance group. The blog section has new posts about smart mobility initiatives.
The community engagement is steady, with gamification elements (700 karma points seen among
top users) encouraging participation...", and so forth. These insights are generated dynamically

from the data on the site.
Conclusion and Further Considerations

In this document, we covered the Smart Alps Community Status app in detail, from its purpose
and features to a deep dive into its implementation and instructions on how to deploy and use it.

To recap, this tool automates the collection of community data and leverages an Al agent to

23

Co-funded by
HILSIrey the European Union

Alpine Space

create a polished report. It demonstrates the power of combining web scraping, data parsing, and

large language models in a straightforward Streamlit application.
Key functionality:

e The CDR uses reliable Python libraries to gather up-to-date information from a live

website. This ensures that each report reflects the latest state of the community.

e Therationale behind extracting key metrics via regex is to surface important numbers that

matter to stakeholders, without manual effort.

e Integration with an Al (through Chatbase’s API) allows for turning raw data into meaningful
narratives and insights. The Al (prompted as a "senior data analyst") provides contextually

relevant analysis that can save human analysts time and provide a baseline report.

o Streamlit ties everything together in an accessible Ul, proving why it is a popular choice
for data apps, rapid development, and easy sharing of tools that non-technical users can

operate with just a web browser.

e The design also keeps things modular (each function has a single responsibility), which
makes the code maintainable and extensible. For instance, one could add more sections

to scrape or change the Al prompt for a different style of report, with minimal changes.

Possible Improvements: Looking ahead, there are several ways this component could be

enhanced:

e Caching and Schedule: Using caching, the app could avoid re-scraping the site if run
multiple times in a brief period. Additionally, scheduling a daily or weekly auto-run and

saving the reports could build a history of reports.

e Visualization: The text report could be supplemented with simple charts (e.g., a time
series of user growth if historical data can be obtained) since Streamlit can render charts

from libraries like matplotlib.

24

Co-funded by
HILSIrey the European Union

Alpine Space

« Interactivity: One might allow the user to select which sections to include or to input a
date range for activity (though that would require the site to support filtering by date,

which might not be directly available without additional data sources).

e Al Model Choice: If needed, one could integrate directly with OpenAl’s APl or another LLM,
but Chatbase provides a convenient layer especially if the chatbot is fine-tuned on project-

specific information.

e Error Handling: Currently, errors in fetching or the Al call will surface as messages or
exceptions. We could improve user feedback, for example, by gracefully managing
timeouts (showing a message like "Unable to fetch forums data at this time, generating

report with available data...").

The goal is that developers can confidently maintain or expand it, and stakeholders can
appreciate its functionality and usage when building rural digitalization tools [5]. The Smart Alps
Community Status app is a practical example of how modern tools can automate insight
generation, helping the community organizers focus on decision-making rather than data

gathering.

References

[1] Hassan, L., & Hamari, J. (2020). Gameful civic engagement: A review of the literature on

gamification of e-participation. Government Information Quarterly, 37(3), 101461.

[2] Martinez-Gil, J., Pichler, M., Lechat, N., Lentini, G., Cvar, N., Trilar, J., ... & Marconi, A. (2024). An

overview of civic engagement tools for rural communities. Open Research Europe, 4, 195.

[3] Williams, B., Damstra, D., & Stern, H. (2015). Professional WordPress: design and development.
John Wiley & Sons.

[4] Wordpress, your way. WordPress.com. (n.d.). https://wordpress.com/

[5] Zavratnik, V., Kos, A., & Stojmenova Duh, E. (2018). Smart villages: Comprehensive review of

initiatives and practices. Sustainability, 10(7), 2559.

25

https://wordpress.com/

