
-

DELIVERABLE 3.5.1 | Component

for Data Reporting

The INTERREG Alpine Space SmartCommUnity project|

October 2025

University of Ljubljana (Lead partner)

Poliedra - research and consultancy centre of Milan’s Polytechnic University on environmental

ANCI Liguria

Verband Region Südlicher Oberrhein

Regionalverband Südlicher Oberrhein

ITC – Innovation Technology Cluster Murska Sobota Association for the networked development of territories and services

Autonomous Region of Valle d’Aosta

Swiss Center for mountain regions SAB

Energy and Environment Agency of Lower Austria

Software Competence Center Hagenberg GmbH

Region Lucerne West

The Project is co-funded by the European Union through the Interreg Alpine Space programme

1

List of content

List of content .. 1

List of figures ... 2

Abstract .. 3

Introduction ... 3

Overview of Features and Workflow ... 4

Technical Architecture .. 5

Code Walkthrough (Modules and Functions) ... 7

Data Fetching .. 8

Bulk Scraping .. 9

Parsing Metrics .. 10

Communicating with Chatbase .. 11

About Chatbase ... 13

Streamlit App Structure .. 13

Deploying the CDR on the Streamlit Community Cloud .. 18

Deployment on Other Platforms .. 19

Usage Tutorial (For End Users) ... 20

Conclusion and Further Considerations .. 23

References ... 25

2

List of figures

Figure 1. Location of the homepage to access the CDR... 3

Figure 2. View of the GitHub repository for the CDR .. 8

Figure 3. General view of the CDR ... 20

Figure 4. General overview of one report generated using our tool ... 22

Figure 5. General view of the Recommendations for Improvement and Conclusions 23

3

Abstract

This Deliverable 3.5.1 reports the development of a component that automates the process of

gathering and reporting on the user activity within the SmartCommUnity platform. It retrieves

text from key website sections, identifies metrics such as active users and post counts, then

forwards this material to an AI agent through the Chatbase API. A Streamlit1 interface lets users

enter a custom prompt, initiate the workflow with a button, view the generated report, and

download it. Deployment options include local execution and hosting on the Streamlit Cloud.

Introduction

The Component for Data Reporting (CDR) is a Streamlit-based web application designed to

generate a status report of the SmartCommUnity platform activity. It automatically collects data

from the online community platform and uses an AI engine to produce an insightful report. This

document serves as a technical document, explaining how the program works under the hood

and how to deploy and use it. Figure 1 shows the location to get access to the component.

Figure 1. Location of the homepage to access the CDR

1 https://streamlit.io/

https://streamlit.io/

4

What does the component do? In simple terms, the component scrapes key sections of the Smart

Alps community site (such as homepage, insights, forums, and blog), extracts important statistics

(like number of users, threads, posts, etc.), and then feeds this information to an AI chatbot (via

Chatbase API) to generate a Community Status Report. The output is a text-based report

summarizing user activity and other insights across the platform.

Who is it for? The tool is useful for community managers, project stakeholders, or data analysts

who want to quickly understand the health and engagement of the Smart Alps community

without manually gathering data. Non-technical users can simply click a button to get a report,

while technical users can extend or customize the component as needed. This fits well with the

current trends on engagement platforms [1, 2].

Overview of Features and Workflow

To understand how the program operates, let us outline its main components and workflow:

• Web Scraping of Community Data: The app automatically fetches text content from

multiple sections of the Smart Alps website that has been developed in Wordpress [3, 4].

It uses Python’s requests library to retrieve page HTML and to parse and extract textual

information.

• Data Extraction and Metrics: After obtaining raw text from the site, the component scans

the text for key numeric indicators (using regular expressions). It looks for patterns like "X

active users", "Y threads", "Z posts", etc., converting these figures into structured metrics.

This gives concrete numbers for community activity.

• AI-Powered Analysis (Chatbase API): The collected textual content and metrics are then

sent to an AI service to analyze and summarize. The component uses Chatbase (an AI

chatbot platform) via its API to generate the report. Chatbase allows integration of custom

AI agents through API calls, enabling the app to send the website data and receive a

conversational summary back. The app asks an AI (configured as a "senior data analyst")

to provide insights into the community’s status using the scraped data as context.

5

• Streamlit User Interface: The entire tool runs as a Streamlit web app. Streamlit is an

open-source Python framework that lets developers create interactive data apps with just

a few lines of code. In this component, Streamlit provides the front-end: a simple UI with

a title, an input text area for a custom prompt, and a button to generate the report. It

displays the resulting report nicely formatted and even offers a download button for

convenience.

• Customization and Automation: Users can customize the focus of the report by providing

a prompt (for example, "focus on the last month’s new threads and active users"). The

component then includes that in the AI prompt to tailor the analysis. Everything from data

collection to report generation happens automatically when the user clicks "Generate

Report", making it easy to use.

In summary, the program flows through data scraping → data parsing → AI analysis → report

display. The following sections dive deeper into the technical implementation of each part, and

a later section will explain how to deploy and use the component.

Technical Architecture

This section provides a technical breakdown of the application’s structure. The code is organized

into several functions, each responsible for a specific task, and a main section that ties everything

together in the Streamlit app interface. Below is a high-level architecture outline:

• Language & Framework: Python is the programming language used, using the Streamlit

framework for the UI and interactivity. Streamlit enables the component to run in a web

browser and provides widgets like text input and buttons.

• External Libraries: Key libraries include:

o requests for HTTP requests to fetch web pages (simplifies making GET calls to URLs

and handling responses).

6

o bs4 (BeautifulSoup) for parsing HTML content and extracting text from <p> tags

(paragraphs).

o re (Python's regex library) for pattern matching to find statistical figures in text.

o PIL (Pillow) for image handling, used here to load and display a GIF logo if available.

o streamlit for building the interactive UI elements (text areas, buttons, display

functions).

• Chatbase API: Instead of directly using an OpenAI API, the component uses Chatbase,

which hosts an AI agent (powered by GPT). The Chatbase API endpoint

(https://www.chatbase.co/api/v1/chat) is called with an authorization token and a

specific chatbot ID (set in the app’s configuration). The payload includes a sequence of

messages (with roles like "system" and "user") to simulate a conversation for the AI.

Chatbase returns the AI-generated response text, which the app then displays.

• State and Secrets Management: Sensitive information such as the Chatbase API key

(AUTH) and the Chatbase chatbot ID (ID) are not hard-coded; they are retrieved from

st.secrets. In Streamlit, st.secrets is a secure way to store credentials or config

variables. This means the actual API key and chatbot ID are kept outside the code (for

security) and injected via a secrets file or environment variables at runtime.

The text below illustrates the flow when a user runs the app:

1. User Input: User accesses the Streamlit app UI. They see a prompt text box and a

"Generate Report" button. They may optionally type a focus prompt (or use the default

one).

2. Data Scraping: Upon clicking the button, the app invokes scrape_sections() which

calls fetch_text() for each predefined URL (Homepage, Insights, Forums, Blog on

smart-alps.eu). The app shows a spinner indicating progress.

https://www.chatbase.co/api/v1/chat
https://smart-alps.eu/

7

3. Content Compilation: The text from each section is concatenated into one large context

string. Section titles separate the content for clarity.

4. Metrics Extraction: The combined text is scanned by extract_stats() to find key

numbers (active users, threads, posts, discussions). If found, these stats are appended as

a "Key Metrics" summary to the context.

5. AI Query Formation: The context (scrapped text + metrics) and the user’s prompt are

packaged into a payload and sent to the Chatbase API via send_to_chatbase(). This

includes a system role message to set the AI persona (a senior data analyst) and two user

messages: one containing the context data, and one containing the user’s request prompt.

6. AI Response: Chatbase processes this and returns a generated report text. The spinner

stops.

7. Output Display: The Streamlit app then displays the result under "Community Status

Report" and provides a download button for the user to save the report as a text file.

Throughout this flow, errors (like a failed web request) are caught and reported in the text (e.g., if

a section fails to load, the context will contain an [Error fetching ...] note for that

section, so the AI is aware something was missing).

The next section will explain each part of the code in detail, explaining the logic and purpose of

each function and component.

Code Walkthrough (Modules and Functions)

Let us go step-by-step through the code, breaking down what each function does and how they

work together. This will be useful for developers or just users who want to understand or modify

the app’s internals.

First, it is necessary to mention that the code is available to the public in the form of Open Source,

so they can download, inspect, and execute the code. Figure 2 shows the GitHub repository where

8

it is located: https://github.com/jorge-martinez-gil/data-reporting-component. After that, let us

analyze the component in more detail.

Figure 2. View of the GitHub repository for the CDR

Data Fetching

Purpose: Retrieve the textual content from a given webpage URL. This function uses the requests

library to perform an HTTP GET request and then parses the HTML to extract readable text.

• The function accepts an url string and attempts to fetch it with requests.get. A

timeout of 15 seconds is set to avoid hanging if the site is slow or unresponsive.

• If the HTTP request fails (due to a network error or a non-200 status code), the exception

is caught and a message like "[Error fetching <url>: <error>]" is returned. This

ensures the calling code knows that section cannot be retrieved.

https://github.com/jorge-martinez-gil/data-reporting-component

9

• On success, it uses BeautifulSoup to parse the HTML (BeautifulSoup(resp.text,

'html.parser')). BeautifulSoup then finds all <p> tags on the page

(soup.find_all('p')).

• It iterates through each paragraph tag and uses get_text(strip=True) to extract

clean text. All paragraph texts are collected into a list.

• The list of paragraph texts is then joined with two newlines ("\n\n") between each, to

form a continuous block of text. This newline separation helps preserve some separation

between paragraphs when the AI analyzes the context.

• The resulting text string is returned. If no <p> tags are found or all are empty, this might

return an empty string (though in practice the sections we target have text content).

Why this approach? Web pages often contain menus, scripts, and other non-content elements.

The rationale behind focusing only on <p> tags is to extract the meaningful textual content (like

article text, descriptions, forum posts, etc.) and ignore navigation menus or other irrelevant text.

This keeps the context focused and relevant for the AI analysis.

Bulk Scraping

Purpose: Gather text from multiple predefined sections of the Smart Alps site in one go. The

function defines a dictionary of section names and their URLs, then uses fetch_text to get

content for each.

• The sections targeted (as seen in the code) are:

o 'Homepage' – the main landing page (https://smart-alps.eu/)

o 'Insights' – a section for insights or news (https://smart-alps.eu/insights/)

o 'Forums' – the community forums page (https://smart-alps.eu/forums/)

o 'Blog' – the blog page (https://smart-alps.eu/blog/)

https://smart-alps.eu/
https://smart-alps.eu/insights/
https://smart-alps.eu/forums/
https://smart-alps.eu/blog/

10

• It returns a dictionary where the keys are section names and values are the text content

fetched from those URLs.

• Internally, it uses a dictionary comprehension to loop over the sections: name:

fetch_text(url) for name, url in sections.items(). This means it calls

fetch_text on each URL and collects the results.

• The code in main() can scrape all needed data with a single call, while showing a loading

spinner to the user.

This design makes it easy to add or remove sections in the future by just editing the sections

dictionary. Each section’s content is kept separate initially (in the dictionary) for clarity or

potential separate use, but as we will see next, they get combined for the AI processing.

Parsing Metrics

Purpose: Search the aggregated text for specific statistical metrics (active users, threads, posts,

discussions) and extract their numeric values. The function returns a dictionary of any stats found.

• The function is given one big text string (which could be the concatenation of all sections).

• It defines a set of regex patterns to look for certain phrases followed by numbers:

o 'Active Users': r'([\d,]+)\s+active users' – This regex looks for one or more digits

(with optional commas) followed by "active users". For example, it would catch

"5,000 active users" or "500 active users".

o 'Threads': r'([\d,]+)\s+threads'

o 'Posts': r'([\d,]+)\s+posts'

o 'Discussions': r'([\d,]+)\s+discussions'

• The patterns are case-insensitive (re.IGNORECASE), so "Threads" or "threads" will both

match.

11

• For each pattern, re.search is used in the text. If a match is found, match.group(1)

captures the numeric part.

• The captured number string may include commas (e.g., "3,897"), so it removes commas

and converts the string to an integer.

• Each metric found is stored in a stats dictionary with the key (e.g., "Active Users") and

the integer value.

• If a particular metric is not found, it just will not appear in the dictionary.

• Finally, the dictionary is returned. For example, it might return {'Active Users':

3897, 'Threads': 50, 'Posts': 200, 'Discussions': 45} depending

on the content found.

This step is important because it pulls out hard numbers that can be highlighted in the report.

These figures can show growth or scale (e.g., how many users or contributions exist), which are

points of interest in a status report. The idea of extracting them beforehand is to facilitate that we

can directly present them and ensure the AI has them clearly listed in the context.

Communicating with Chatbase

Purpose: Send the compiled context and the user’s prompt to the Chatbase API to get an AI-

generated report. This function handles preparing the API request and returning the response

text.

• It constructs a payload dictionary for the POST request. This payload follows Chatbase’s

API format for sending a chat conversation. Specifically, the payload has:

o messages: a list of message objects, each with a role and content.

▪ The first message is {'role': 'system', 'content': 'You are

a senior data analyst providing clear and actionable

community insights.'}. This acts as a system instruction that sets

12

the behavior of the AI. It tells the AI to act like an expert analyst who will

produce insightful and actionable commentary on community data.

▪ The second message is {'role': 'user', 'content': context}.

Here, the entire scraped context (all sections’ text and the metrics

summary) is given as if the user provided this information. This is a way to

feed knowledge into the chatbot for this conversation turn.

▪ The third message is {'role': 'user', 'content': prompt}.

This is the actual question or prompt we want the AI to answer. In our app,

this prompt is either the default instruction (e.g., "Please produce a detailed

analytical report on all user activity...") or a custom prompt entered by the

user in the text area.

o chatbotId: the ID of the specific chatbot configured on Chatbase (this is fetched

from secrets configuration).

o stream: set to False, meaning we want the full reply in one go (not a streaming

response).

• It then performs requests.post to the Chatbase API URL with this JSON payload and

the required headers (including the Authorization token from st.secrets["AUTH"]

and content type). A timeout of 30 seconds is set for this request to avoid hanging too long

if the AI takes time.

• If the HTTP request returns an error (non-2xx status), raise_for_status() will

trigger an exception. In this app, such exceptions are not explicitly caught in this function,

meaning an error here would propagate up (in Streamlit, that would show an error

message on the app). However, if everything is configured correctly (valid API key, chatbot

ID, etc.), the response should be 200 OK.

• The function then parses the JSON response with resp.json(). According to Chatbase

API, the response JSON contains a field 'text' which holds the chatbot’s answer. It does

13

resp.json().get('text', '') to retrieve the text or return an empty string if not

found.

• That text (the AI-generated report) is returned to the caller.

About Chatbase

Chatbase is a platform to create and interact with custom chatbots. In our case, the chatbot has

been set up with knowledge or style relevant to the Smart Alps community. The API call we use is

sending a conversation to the bot and getting the next message. This method of integration allows

us to use AI in a custom interface. The advantage is we can supply our own context dynamically

(the latest scraped data) rather than relying on a pre-defined knowledge base only.

One detail: we supply the context as a user message. This is a common trick to feed background

information into a chat-based AI that might not have a separate memory or knowledge base

loaded. The system prompt sets the tone, the context user message gives facts, and the final user

message asks for the analysis. The AI sees all these messages in sequence and then produces a

response taking them into account.

Streamlit App Structure

Purpose: This is the entry point of the application when running. It sets up the Streamlit interface

and orchestrates the calls to all the functions above when the user interacts with the app so it can

have access to the functionality.

The key parts of main() include:

• Page Configuration: st.set_page_config(page_title="Smart Alps

Community Status", layout="wide"). This sets the title of the page (seen on the

browser tab) and uses a wide layout for the app (more horizontal space, which is useful for

wide text like a report).

14

• Logo Display (Optional): The code attempts to open an image file 'logo.gif' and display it

using st.image(logo, width=200). If this file is not present or fails to open, it just

skips (due to the try/except). This is intended to show a logo for branding. In a deployment

scenario, adding a logo.gif to the app directory would make this work.

• Title and Description: st.title("Smart Alps Community Status Report")

creates a large header on the page. Then st.write(...) is used to put a descriptive

text below it. The description explains that the tool generates reports about the

SmartCommUnity ecosystem (the main platform and satellite tools).

• Prompt Input: st.text_area("Customize report focus:", value=(

"..."), height=120) provides a multi-line text area pre-filled with a default prompt.

The default prompt is a polite request for a detailed analytical report with actual numbers

and insights. The user can edit this prompt to focus the report on specific aspects if they

want. The height=120 makes it a bit taller for comfort. This text area’s content is stored

in the variable prompt.

• Generate Button: if st.button("Generate Report"): defines a button that says,

"Generate Report". The code inside this if block only runs when the button is clicked. This

is the main trigger for the process. When clicked, two major phases happen:

1. Scraping Phase: It enters a with st.spinner("Scraping site

content..."): context. Streamlit’s spinner will show the message "Scraping

site content..." to indicate work in progress. Inside this, it calls sections =

scrape_sections(). This will fetch all the section texts as described earlier.

Next, it combines them into one big string combined_text. This combination is

done by joining each section’s content preceded by a markdown header line (###

SectionName) for readability. Essentially:

2. AI Generation Phase: Next, it enters another spinner: with

st.spinner("Generating report via Chatbase..."): Inside this, it

calls report = send_to_chatbase(combined_text, prompt). This sends

15

the accumulated context and the user’s prompt to the Chatbase API and waits for

the result. The spinner message "Generating report..." is shown during this time,

which might take a few seconds depending on the AI and network latency.

▪ When send_to_chatbase returns, the variable report holds the AI-

generated report text.

• Displaying Results: After the spinners, the code proceeds to show the output. It does

st.subheader("Community Status Report") which puts a nice subheader

above the report, indicating what the text below is.

o Then st.markdown(report) is used to render the report text. The report

contains multiple paragraphs, bullet points, etc., as generated by the AI. Using

markdown ensures that any Markdown formatting in the AI’s response is rendered

(for example, if the AI output includes lists or headings, they will appear formatted

correctly).

o Finally, st.download_button(...) is created to allow downloading the

report. This button is labeled "Download Report as TXT". It uses the report string

as data, sets a filename "community_status_report.txt", and specifies

mime="text/plain". This means when clicked, the browser will download a

text file with the content of the report, which is useful for saving or sharing the

analysis.

• Running the App: The last part if __name__ == "__main__": main() ensures

that when this script is executed, it calls the main() function to start the Streamlit app.

In Streamlit, this structure also means the app interface is defined by what happens in

main().

A few UI/UX details to note:

16

• The use of st.spinner provides feedback to the user that something is happening

during the potentially slow operations (scraping and AI processing). Without it, the user

might think the app froze.

• The separation of scraping and AI generation spinners is good for clarity, if scraping takes

longer due to multiple pages, the user sees that step, and then the AI step.

• Using a sub header for the report and markdown for content makes the output look clean.

Also, by providing a download option, the user can retain the report, which might be

needed for reporting to others or record-keeping.

The main() function ties everything together: it gets input, triggers processing, and outputs

results, all within the reactive framework of Streamlit (which reruns the script from the top on

each interaction, maintaining widget state seamlessly).

Deployment Guide

One of the requirements was how to deploy this application. Deployment can be done on various

platforms, but here we will consider a couple of common scenarios: running locally or deploying

to Streamlit Cloud (Community Cloud) for public access. We will also cover the necessary

configuration for the Chatbase integration.

Prerequisites

• Python Environment: Ensure to have Python 3.8+ (Streamlit typically supports Python

3.7 and above, but using a recent version is recommended).

• Required Libraries: The code uses several libraries. These should be installed via pip. It

might be necessary to create a requirements.txt with the following (if not already

provided):

Installing these (pip install streamlit requests beautifulsoup4 Pillow) will cover our dependencies

(note: PIL is installed via the Pillow package).

17

• Chatbase Account: It is necessary to have a Chatbase API key and a Chatbot ID:

o Sign up or log in to Chatbase and create an AI chatbot (AI agent). This typically

involves uploading data or giving it instructions. In our case, we might set it up with

some base knowledge or just rely on our context.

o Retrieve the API key (Authorization) and the Chatbot ID from the Chatbase

dashboard. These will be used to authorize our API calls.

• Smart Alps Website Access: The target site smart-alps.eu must be accessible from the

machine or environment where the app runs (it is a public site, so this is usually fine). If

running behind a firewall, ensure outbound HTTPS to that domain is allowed.

Configuring Secrets

The code expects st.secrets["AUTH"] and st.secrets["ID"] to be defined. There are

two main ways to supply these:

• Streamlit Community Cloud: If deployed on Streamlit’s cloud platform, it is possible to

add secrets via the app’s settings on the web. In the Secrets section of the app, set AUTH

to the Chatbase API key and ID to the Chatbot ID.

• Local Deployment (using .streamlit/secrets.toml or environment): If running locally or

on an own server, it is possible to create a file .streamlit/secrets.toml in the application

directory:

Streamlit will read this file and populate st.secrets accordingly. Alternatively, it is possible to

set environment variables and access them via os.environ, or modify the code to directly use

env variables if preferred.

Make sure to keep these secrets secure and never commit them to a public repository.

Running Locally

To run the app on a local machine:

18

1. Install the prerequisites as mentioned (Python, pip packages).

2. Set up the secrets.toml with the Chatbase credentials.

3. Save the provided code into a file, say app.py.

4. Place any image as logo.gif in the same directory (optional).

5. Open a terminal in that directory and execute streamlit run app.py.

6. Streamlit will start a local web server and output a network URL (by default it is often

http://localhost:8501). Open this URL in the web browser to view the app.

7. See the title "Smart Alps Community Status Report", the prompt text area, etc. Click

"Generate Report" to assess it. The first run might take a bit of time (especially if the site

or AI is slow.

Streamlit automatically reloads the app when editing the code and saving, which is convenient

for iterative development or tweaking.

Deploying the CDR on the Streamlit Community Cloud

Streamlit offers a free hosting service for public apps. To deploy there:

1. Push the code to a GitHub repository (make sure not to include secrets in the code or repo).

2. On the Streamlit Cloud platform, set up a new app by connecting to the GitHub repo and

selecting the app.py file.

3. In the app’s settings on Streamlit Cloud, go to Secrets and add the AUTH and ID secrets as

mentioned earlier.

4. Deploy the app. Streamlit Cloud will install the requirements and run the app. After a short

build, it will provide a URL where the app is live.

http://localhost:8501/

19

5. Visit the URL and use the app from anywhere. It is possible to share this URL with others

who might want to generate the report.

One consideration: The Chatbase API usage might have cost or rate limits depending on the plan.

Make sure to monitor usage, especially if the app is public, because each report generation

triggers an AI API call.

Deployment on Other Platforms

If there is need to deploy on a different platform (like Heroku, AWS, or a self-hosted server), the

process will be similar:

• Ensure the environment has the necessary packages.

• Provide environment variables or a secrets file for the credentials in order that the

confidential data cannot be publicly seen.

• Run streamlit run app.py in a stable way (for example, using a process manager or

container). Keep in mind Streamlit by default opens the app on a port; on a cloud VM to

listen on all interfaces (streamlit run app.py --server.address=0.0.0.0).

• Make sure the port is exposed if using a cloud service.

Note on scalability: This app is lightweight, the main delays are waiting on external HTTP calls

(scraping the site, calling the Chatbase API). Streamlit can manage multiple users, but if many

users trigger it simultaneously, the bottlenecks would be the external services (website and

Chatbase API). For internal or moderate use, this should be fine. If deploying for heavy use,

consider adding caching for the scraping and ensure the Chatbase plan can manage concurrent

requests at the same time.

20

Usage Tutorial (For End Users)

This section is a non-technical guide for someone who just wants to use the app to get reports,

included to make the document self-contained for all audiences.

Figure 3 shows us the general view of the DRC, particularly the view of the landing page. The

interface provides quick access to key actions through clearly labeled buttons and panels. No

technical knowledge is required to make use of this component.

Figure 3. General view of the CDR

Accessing the App: Once the app is deployed (either locally or on a cloud), the user just needs a

web browser. Navigate to the app URL. They will see the interface with the title and a description

of the tool.

Generating a Report:

1. (Optional) Adjust the focus: There is a text box labeled "Customize report focus". By

default, it has a general prompt request for a detailed report on all user activity. The user

can modify this prompt. For example, one could write "Focus on new forum threads created

21

this week and user engagement metrics." This will instruct the AI to tailor the report. If

unsure, the user can leave the default text which yields a broad overview.

2. Click Generate: Press the "Generate Report" button. At this point, the user will see a

spinner and status messages:

o "Scraping site content...", the app is going to proceed by collecting the latest

data. This typically takes a few seconds. If it is the first run in a while, it might be a

bit longer.

o "Generating report via Chatbase...", the app is now analyzing the data with AI.

This is when the AI formulates the report. It may take a few more seconds.

3. View the Report: Once done, a section titled "Community Status Report" appears below

the button. The report itself is in a formatted text. It might contain:

o An overview paragraph summarizing the community activity.

o Key statistics like number of active users, posts, etc., highlighted or enumerated.

o Insights or trends identified by the AI, such as growth in user count, popular

discussion topics, comparison with previous periods if such info is in the context,

etc.

o Sections focusing on different areas (the AI might organize the report by the

sections it was given – e.g., insights about sections from the platform such as the

Forums, Blog updates, etc., depending on how the prompt and context were

interpreted).

Figure 4 shows us an example of a report generated using our CDR, illustrating how results are

automatically formatted for readability and consistency.

22

4. Download (optional): If the user wants to save this report, they can click the "Download

Report as TXT" button. This will download a plain text file. They can open it in any text

editor or word processor. This is useful for record-keeping, sharing via email, or further

editing.

Finally, Figure 5 shows us the general view of the Recommendations for Improvement and

Conclusions section, where the system summarizes detected issues and suggests corrective

actions. This view helps users quickly understand which factors most affect the results and

provides clear, actionable guidance for future improvements.

Figure 4. General overview of one report generated using our tool

23

Figure 5. General view of the Recommendations for Improvement and Conclusions

The user does not need to log in or provide any credentials to use the app. The server manages all

the heavy lifting (scraping and AI calls) where the app is running. From the user’s perspective, it is

one clicks to get the analysis.

Example Scenario: Suppose today a community manager runs the report. The output might say:

"As of today, the Smart Alps platform has 3,897 active users and a total of 50 threads with 200

posts across the forums. In the past month, user activity grew by 5%. Most discussions are happening

in the Smart Governance group. The blog section has new posts about smart mobility initiatives.

The community engagement is steady, with gamification elements (700 karma points seen among

top users) encouraging participation...", and so forth. These insights are generated dynamically

from the data on the site.

Conclusion and Further Considerations

In this document, we covered the Smart Alps Community Status app in detail, from its purpose

and features to a deep dive into its implementation and instructions on how to deploy and use it.

To recap, this tool automates the collection of community data and leverages an AI agent to

24

create a polished report. It demonstrates the power of combining web scraping, data parsing, and

large language models in a straightforward Streamlit application.

Key functionality:

• The CDR uses reliable Python libraries to gather up-to-date information from a live

website. This ensures that each report reflects the latest state of the community.

• The rationale behind extracting key metrics via regex is to surface important numbers that

matter to stakeholders, without manual effort.

• Integration with an AI (through Chatbase’s API) allows for turning raw data into meaningful

narratives and insights. The AI (prompted as a "senior data analyst") provides contextually

relevant analysis that can save human analysts time and provide a baseline report.

• Streamlit ties everything together in an accessible UI, proving why it is a popular choice

for data apps, rapid development, and easy sharing of tools that non-technical users can

operate with just a web browser.

• The design also keeps things modular (each function has a single responsibility), which

makes the code maintainable and extensible. For instance, one could add more sections

to scrape or change the AI prompt for a different style of report, with minimal changes.

Possible Improvements: Looking ahead, there are several ways this component could be

enhanced:

• Caching and Schedule: Using caching, the app could avoid re-scraping the site if run

multiple times in a brief period. Additionally, scheduling a daily or weekly auto-run and

saving the reports could build a history of reports.

• Visualization: The text report could be supplemented with simple charts (e.g., a time

series of user growth if historical data can be obtained) since Streamlit can render charts

from libraries like matplotlib.

25

• Interactivity: One might allow the user to select which sections to include or to input a

date range for activity (though that would require the site to support filtering by date,

which might not be directly available without additional data sources).

• AI Model Choice: If needed, one could integrate directly with OpenAI’s API or another LLM,

but Chatbase provides a convenient layer especially if the chatbot is fine-tuned on project-

specific information.

• Error Handling: Currently, errors in fetching or the AI call will surface as messages or

exceptions. We could improve user feedback, for example, by gracefully managing

timeouts (showing a message like "Unable to fetch forums data at this time, generating

report with available data...").

The goal is that developers can confidently maintain or expand it, and stakeholders can

appreciate its functionality and usage when building rural digitalization tools [5]. The Smart Alps

Community Status app is a practical example of how modern tools can automate insight

generation, helping the community organizers focus on decision-making rather than data

gathering.

References

[1] Hassan, L., & Hamari, J. (2020). Gameful civic engagement: A review of the literature on

gamification of e-participation. Government Information Quarterly, 37(3), 101461.

[2] Martinez-Gil, J., Pichler, M., Lechat, N., Lentini, G., Cvar, N., Trilar, J., ... & Marconi, A. (2024). An

overview of civic engagement tools for rural communities. Open Research Europe, 4, 195.

[3] Williams, B., Damstra, D., & Stern, H. (2015). Professional WordPress: design and development.

John Wiley & Sons.

[4] Wordpress, your way. WordPress.com. (n.d.). https://wordpress.com/

[5] Zavratnik, V., Kos, A., & Stojmenova Duh, E. (2018). Smart villages: Comprehensive review of

initiatives and practices. Sustainability, 10(7), 2559.

https://wordpress.com/

